Question 1174792
Let's calculate the side lengths of triangles ABC and EFD to determine which congruence criterion applies.

**Triangle ABC:**

* AB = √((3 - 0)² + (0 - 0)²) = √(3² + 0²) = √9 = 3
* BC = √((2 - 3)² + (3 - 0)²) = √((-1)² + 3²) = √(1 + 9) = √10
* CA = √((0 - 2)² + (0 - 3)²) = √((-2)² + (-3)²) = √(4 + 9) = √13

**Triangle EFD:**

* EF = √((4 - 1)² + (3 - 3)²) = √(3² + 0²) = √9 = 3
* FD = √((3 - 4)² + (0 - 3)²) = √((-1)² + (-3)²) = √(1 + 9) = √10
* DE = √((1 - 3)² + (3 - 0)²) = √((-2)² + 3²) = √(4 + 9) = √13

**Comparison:**

* AB = EF = 3
* BC = FD = √10
* CA = DE = √13

Since all three sides of triangle ABC are congruent to the corresponding sides of triangle EFD, we can conclude that the triangles are congruent by the Side-Side-Side (SSS) criterion.

Therefore, the correct statement is:

* AB = EF = 3, BC = FD = √10, CA = DE = √13, and ∆ABC ≅ ∆EFD by SSS.