Question 1181633
Let's determine the truth value of ¬(r→s)∨[(p∧¬q)∨¬s] using a truth table. Since there are four variables (p, q, r, s), there are 2⁴ = 16 possible combinations of truth values.

Here's the truth table:

| p | q | r | s | ¬q | ¬s | r→s | ¬(r→s) | p∧¬q | (p∧¬q)∨¬s | ¬(r→s)∨[(p∧¬q)∨¬s] |
|---|---|---|---|----|----|-----|--------|------|----------|-----------------------|
| T | T | T | T | F  | F  |  T  |    F   |  F   |     F    |           F           |
| T | T | T | F | F  | T  |  F  |    T   |  F   |     T    |           T           |
| T | T | F | T | F  | F  |  T  |    F   |  F   |     F    |           F           |
| T | T | F | F | F  | T  |  T  |    F   |  F   |     T    |           T           |
| T | F | T | T | T  | F  |  T  |    F   |  T   |     T    |           T           |
| T | F | T | F | T  | T  |  F  |    T   |  T   |     T    |           T           |
| T | F | F | T | T  | F  |  T  |    F   |  T   |     T    |           T           |
| T | F | F | F | T  | T  |  T  |    F   |  T   |     T    |           T           |
| F | T | T | T | F  | F  |  T  |    F   |  F   |     F    |           F           |
| F | T | T | F | F  | T  |  F  |    T   |  F   |     T    |           T           |
| F | T | F | T | F  | F  |  T  |    F   |  F   |     F    |           F           |
| F | T | F | F | F  | T  |  T  |    F   |  F   |     T    |           T           |
| F | F | T | T | T  | F  |  T  |    F   |  F   |     F    |           F           |
| F | F | T | F | T  | T  |  F  |    T   |  F   |     T    |           T           |
| F | F | F | T | T  | F  |  T  |    F   |  F   |     F    |           F           |
| F | F | F | F | T  | T  |  T  |    F   |  F   |     T    |           T           |

Since the final column has both T and F values, the given statement is a **contingency**.  Its truth value depends on the specific truth values of p, q, r, and s.