Question 1181634
Let's determine the truth value of the statement [(q∨¬p)↔(r→p)]→(q∨s) using a truth table.  Since there are four variables (p, q, r, s), there are 2⁴ = 16 possible combinations of truth values.

Here's the truth table:

| p | q | r | s | ¬p | q∨¬p | r→p | (q∨¬p)↔(r→p) | q∨s | [(q∨¬p)↔(r→p)]→(q∨s) |
|---|---|---|---|----|------|-----|----------------|-----|--------------------------|
| T | T | T | T | F  |  T   |  T  |       T        |  T  |            T             |
| T | T | T | F | F  |  T   |  T  |       T        |  T  |            T             |
| T | T | F | T | F  |  T   |  T  |       T        |  T  |            T             |
| T | T | F | F | F  |  T   |  T  |       T        |  T  |            T             |
| T | F | T | T | F  |  F   |  T  |       F        |  T  |            T             |
| T | F | T | F | F  |  F   |  T  |       F        |  F  |            T             |
| T | F | F | T | F  |  F   |  T  |       F        |  T  |            T             |
| T | F | F | F | F  |  F   |  T  |       F        |  F  |            T             |
| F | T | T | T | T  |  T   |  F  |       F        |  T  |            T             |
| F | T | T | F | T  |  T   |  F  |       F        |  T  |            T             |
| F | T | F | T | T  |  T   |  T  |       T        |  T  |            T             |
| F | T | F | F | T  |  T   |  T  |       T        |  T  |            T             |
| F | F | T | T | T  |  T   |  F  |       F        |  T  |            T             |
| F | F | T | F | T  |  T   |  F  |       F        |  F  |            T             |
| F | F | F | T | T  |  T   |  T  |       T        |  T  |            T             |
| F | F | F | F | T  |  T   |  T  |       T        |  F  |            F             |

Since the final column has both T and F values, the given statement is a **contingency**.  Its truth value depends on the specific truth values of p, q, r, and s.