Question 1209568
<br>
{{{x^4+(2-x)^4=34}}}<br>
The expressions "x" and "2-x" are symmetric about the expression "1-x".<br>
So define a new variable:<br>
y = 1-x<br>
Then...<br>
x = 1-y
2-x = 2-(1-y) = 1+y<br>
Now the equation is<br>
{{{(1-y)^4+(1+y)^4=34}}}<br>
{{{(1-4y+6y^2-4y^3+y^4)+(1+4y+6y^2+4y^3+y^4)=34}}}<br>
{{{2+12y^2+2y^4=34}}}<br>
{{{1+6y^2+y^4=17}}}<br>
{{{y^4+6y^2-16=0}}}<br>
{{{(y^2+8)(y^2-2)=0}}}<br>
{{{y^2=-8}}} or {{{y^2=2}}}<br>
The problem asks for the real number solutions, so<br>
{{{y^2=2}}}
{{{y=0+-sqrt(2)}}}<br>
{{{x=1-y=1+-sqrt(2)}}}<br>
ANSWERS: {{{1+sqrt(2)}}} and {{{1-sqrt(2)}}}<br>
Those solutions are easily verified using a graphing calculator like the TI-84.<br>