Question 1209569
<font color=black size=3>
Answer: <font color=red>x = 40</font>


Explanation


1, 4, 7, 10, ... is an arithmetic sequence
a<sub>1</sub> = 1 is the first term
d = 3 is the common difference.


S<sub>n</sub> = sum of the first n terms
S<sub>n</sub> = 0.5n*(2*a<sub>1</sub>+d*(n-1))
287 = 0.5n*(2*1+3*(n-1))
1.5n^2-0.5n-287 = 0


Using the quadratic formula will yield solutions n = -13.667 (approximate) and n = 14.
We ignore the negative value of n. 
n must be a positive whole number 1,2,3,etc
I'll let the student handle the scratch work for the quadratic formula.


We determined there are 14 terms being added in {1,4,7,10,...,x} to yield the sum 287.


Let's determine the 14<sup>th</sup> term.
a<sub>n</sub> = a<sub>1</sub> + d(n-1)
a<sub>n</sub> = 1 + 3*(n-1)
a<sub>n</sub> = 3n-2
a<sub>14</sub> = 3*14-2
a<sub>14</sub> = <font color=red>40</font>


Therefore, <font color=red>x = 40</font> and 1+4+7+10+...+<font color=red>40</font> = 287


Verification using <a href="https://www.wolframalpha.com/input?i=1%2B4%2B7%2B10%2B...%2B40+%3D+287">WolframAlpha</a>
Another way to confirm is to use a spreadsheet. 
</font>