Question 1209382
<pre>
{{{matrix(2,1,"",6^(1-2/x) = 3)}}}
{{{matrix(2,1,"",6^1*6^(-2/x) = 3)}}}
{{{matrix(2,1,"",2*6^(-2/x) = 1)}}}
{{{matrix(2,1,"",6^(-2/x) = 1/2)}}}
{{{matrix(2,1,"",6^(-2/x) = 2^(-1))}}}
Raise both sides to the -1 power
{{{matrix(2,1,"",6^(2/x) = 2)}}}
{{{matrix(2,1,"",2^(2/x)*3^(2/x) = 2)}}}
{{{matrix(2,1,"",3^(2/x) = 2^(1-2/x))}}}
Take log base 2 of both sides:
{{{expr(2/x)log(2,(3))=1-2/x}}}
{{{expr(2/x)(log(2,(3))+1)=1}}}
{{{2(log(2,(3))+1)=x}}}
{{{2*log(2,(3))+2=x}}}
Raise 2 to the power of each side
{{{2^(2*log(2,(3))+2)=2^x}}}
{{{2^(2*log(2,(3)))*2^2=2^x}}}
{{{matrix(2,1,"",2^(log(2,(3^2)))*4=2^x)}}}
{{{2^(log(2,(9)))*4=2^x}}}
{{{9*4=2^x}}}
{{{36=2^x}}}
Answer: 36

Edwin</pre>