Question 1209382
<font color=black size=3>
Let's solve for x.
6^[ 1-(2/x) ] = 3
log( 6^[ 1-(2/x) ] ) = log(3)
(1-2/x)*log(6) = log(3)
1-2/x = log(3)/log(6)
(x-2)/x = log(3)/log(6)
(x-2)*log(6) = log(3)*x
x*log(6)-2*log(6) = log(3)*x
x*log(6)-log(3)*x = 2*log(6)
x*(log(6)-log(3)) = 2*log(6)
x*log(6/3) = 2*log(6)
x*log(2) = log(6^2)
x = log(36)/log(2)
<font color=blue>x = log<sub>2</sub>(36)</font>
Then,
2^<font color=blue>x</font> = 2^[ <font color=blue>log<sub>2</sub>(36)</font> ] = <font color=red>36</font>


Or after you determine x you could say,
y = 2^x
log(y) = log(2^x)
log(y) = x*log(2)
log(y) = (log(36)/log(2))*log(2)
log(y) = log(36)
y = 36
2^x = <font color=red>36</font>
</font>