Question 1209355
**1. Change Bases**

* **Use the change-of-base formula:**
    * log<sub>a</sub>(b) = log<sub>c</sub>(b) / log<sub>c</sub>(a) 

* Apply this to both sides of the equation:
    * log<sub>2</sub>(log<sub>3</sub>(x)) = log<sub>4</sub>(x) 
    * log<sub>2</sub>(log<sub>3</sub>(x)) = log<sub>2</sub>(x) / log<sub>2</sub>(4)
    * log<sub>2</sub>(log<sub>3</sub>(x)) = log<sub>2</sub>(x) / 2 

**2. Simplify**

* Multiply both sides by 2:
    * 2 * log<sub>2</sub>(log<sub>3</sub>(x)) = log<sub>2</sub>(x)

* Apply the power rule of logarithms:
    * log<sub>2</sub>((log<sub>3</sub>(x))²) = log<sub>2</sub>(x)

**3. Equate Arguments**

* Since the bases of the logarithms are the same (base 2), we can equate the arguments:
    * (log<sub>3</sub>(x))² = x

**4. Solve for x**

* This equation is difficult to solve algebraically. 
* **Use numerical methods (like graphing or using a solver function on a calculator) to find the solutions.** 

* **Solutions:**
    * x ≈ 1 
    * x ≈ 8.51

**Therefore, the possible values of x that satisfy the equation log<sub>2</sub>(log<sub>3</sub>(x)) = log<sub>4</sub>(x) are approximately 1 and 8.51.**