Question 1209256
<pre>

{{{x^2 + 6x + 13 = -5x^2 - 17x - 18}}}

{{{6x^2+23x+31}}}{{{""=""}}}{{{0}}}

{{{x = (-(23) +- sqrt( (23)^2-4*(6)*(31) ))/(2*(6)) }}}

{{{x = (23 +- sqrt(529-744))/12 }}}

{{{x = (23 +- sqrt(-215))/12 }}}

The square root of a negative number is imaginary, and is
i times the square root of its opposite

{{{x = (23 +- i*sqrt(215))/12 }}}

So there are two complex imaginary solutions:

{{{23/12 + expr(sqrt(215)/12)*i}}} and {{{23/12 - expr(sqrt(215)/12)*i}}}

Edwin</pre>