Question 1209239
<font color=black size=3>
x is one of the unknown numbers
6-x must be the other number so the items add to 6.
x + (6-x) = 6


Multiplying the values and setting the product equal to -432, will give:
x*(6-x) = -432
6x-x^2 = -432
6x-x^2+432 = 0
-x^2+6x+432 = 0


You could use trial-and-error to factor. But this method could be a bit slow and the quadratic formula is the much more efficient route.


Compare -x^2+6x+432 = 0 with the template ax^2+bx+c = 0
a = -1
b = 6
c = 432
{{{x = (-b+-sqrt(b^2-4ac))/(2a)}}}


{{{x = (-6+-sqrt((6)^2-4(-1)(432)))/(2(-1))}}}


{{{x = (-6+-sqrt(36 + 1728))/(-2)}}}


{{{x = (-6+-sqrt(1764))/(-2)}}}


{{{x = (-6+-  42)/(-2)}}}


{{{x = (-6+42)/(-2)}}} or {{{x = (-6-42)/(-2)}}}


{{{x = (36)/(-2)}}} or  {{{x = (-48)/(-2)}}}


{{{x = -18}}} or  {{{x = 24}}}
Your quadratic formula scratch work doesn't have to be as detailed. 


If x = <font color=red>-18</font> is one of the numbers, then 6-x = 6-(-18) = 6+18 = <font color=red>24</font> is the other number.


If x = <font color=red>24</font>, then 6-x = 6-24 = <font color=red>-18</font>


Therefore <font color=red>the pair of values are <u>-18 and 24</u></font>


Check:
-18*24 = -432
-18+24 = 6
Both requirements are confirmed.
</font>