Question 1209209
.
Given that x = 2ᵅ and y = 4ⁿ, show clearly that log₂(x²y) = 3α + 2n
~~~~~~~~~~~~~~~~~~~~~~~~~~~~



This statement can not be proved,  since it is  {{{highlight(highlight(FATALLY))}}}  {{{highlight(highlight(WRONG))}}}.


<pre>
    To make sure that it is wrong, take a = 1, n = 1.

    Then  {{{x^2}}} = {{{(2^1)^2}}} = 4;  y = {{{4^1}}} = 4;  {{{x^2*y}}} = 4*4 = 16,

    {{{log(2,(x^2y))}}} = {{{log(2,16)}}} = 4,


    but  3a + 2n = 3*1 + 2*1 = 3 + 2 = 5 --->  {{{highlight(highlight(CONTRADICTION))}}}.
</pre>

So, &nbsp;this statement can not be proved - - - but it can be &nbsp;{{{highlight(highlight(DISPROVED))}}}, &nbsp;instead.