Question 1208898
<pre>
Prove that if 0 < a < b, then 
0 < (1/b) < (1/a).

   0 < a < b
   {{{0/b < a/b < b/b}}} ----- Dividing each SECTION of the compound inequality by b
   {{{0 < a/b < 1)}}}
{{{matrix(2,1, 0/a < (a/b)/a < 1/a, 0/a < (cross(a)/b)(1/cross(a)) < 1/a)}}} ------ Dividing each SECTION of the compound inequality by a

{{{highlight(highlight_green(highlight(0 < 1/b < 1/a)))}}}</pre>