Question 1208902
<pre>  

{{{x }}}{{{""=""}}}{{{ (-b +- sqrt( b^2-4ac ))/(2a^"") }}}

Multiply both sides by 2a to clear the fraction

{{{2ax }}}{{{""=""}}}{{{ -b +- sqrt( b^2-4ac ) }}}

Add b to both sides to isolate the radical term

{{{2ax +b }}}{{{""=""}}}{{{"" +- sqrt( b^2-4ac ) }}}

Square both sides to eliminate the radical

{{{4a^2x^2+4abx+b^2}}}{{{""=""}}}{{{b^2-4ac}}}

Add -b<sup>2</sup> to both sides

{{{4a^2x^2+4abx}}}{{{""=""}}}{{{-4ac}}}

Divide through by -4a

{{{(4a^2x^2)/(-4a^"")+(4abx^"")/(-4a^"")}}}{{{""=""}}}{{{(-4ac^"")/(-4a^"")}}}

Simplify

{{{-ax^2-bx}}}{{{""=""}}}{{{c}}}

Add -c to both sides to get 0 on the right

{{{-ax^2-bx-c}}}{{{""=""}}}{{{0}}}

Multiply through by -1 to minimize negative and minus signs:

{{{ax^2+bx+c}}}{{{""=""}}}{{{0}}}

which is the general quadratic equation, which is what we always 
start with to derive the quadratic formula.

Edwin</pre>