Question 1208444
<pre>

{{{(1+x^"")/(2x^("1/2"))}}}{{{""+""}}}{{{x^("1/2")}}}

{{{(1+x^"")/(2x^("1/2"))}}}{{{""+""}}}{{{x^("1/2")/1^""}}}

Get LCD = 2x<sup>1/2</sup>

{{{(1+x^"")/(2x^("1/2"))}}}{{{""+""}}}{{{expr(x^("1/2")/1^"")*expr((2x^("1/2"))/(2x^("1/2")))}}}

{{{(1+x^"")/(2x^("1/2"))}}}{{{""+""}}}{{{2x^1/(2x^("1/2"))}}}

{{{(1+3x^"")/(2x^("1/2"))}}}

You could leave it like that.  Or change the 1/2 power to a
square root, like this:

{{{(1+3x)/(2sqrt(x))}}}

But most teachers like the denominator
to be rationalized:

{{{(1+3x)/(2sqrt(x))}}}{{{""*""}}}{{{sqrt(x)/sqrt(x)}}}

{{{((1+3x)sqrt(x))/(2x)}}}

Edwin</pre>