Question 1208236
<pre>
Hi
David jogged for 5 days in a row. Each day he jogged 1.4km more than the day before. At the end of 5 days
he jogged a total of 20.6km. How far did he jogged on the 5th day. 

The MIDDLE day of the 5-day period is the {{{matrix(1,6, (5 + 1)/2, "=", 6/2, "=", 3^(rd), day)}}}
On the MIDDLE or 3<sup>rd</sup> day, he jogged the AVERAGE/MEAN number of miles, or {{{matrix(1,4, 20.6/5, "=", 4.12, miles)}}}

He jogged 4.12 miles on the 3<sup>rd</sup> day, and consistently jogged 1.4 miles greater than previous days. 
So, <font color = red><font size = 4><b>on the 5<sup>th</sup> day </font></font></b>(2 days after the 3<sup>rd</sup> day), <font color = red><font size = 4><b>he jogged</font></font></b> 4.12 + 2(1.4) = 4.12 + 2.8 = <font color = red><font size = 4><b>6.92 miles</font></font></b>.

<font color = blue><font size = 4><b><u>OR</font></font></b></u>.

This is an AP/AS (Arithmetic Progression/Arithmetic Sequence) that the following SUM of an AP formula
can be used. {{{matrix(1,3, S[n], "=", (n/2)(2a[1] + (n - 1)d))}}}, with: S<sub>n</sub> = Sum of the sequence (20.6, in this case)
                                               n = Number of terms (5,in this case)
                                              a<sub>1</sub> = The 1<sup>st</sup> term of the sequence (UNKNOWN, in this case)
                                               d = Common difference (1.4, in this case)

          {{{matrix(1,3, 20.6, "=", (5/2)(2a[1] + (5 - 1)1.4))}}} ---- Substituting 20.6 for S<sub>n</sub>, 5 for n, and 1.4 for d
          {{{matrix(6,3, 20.6, "=", (5/2)(2a[1] + (4)1.4), 20.6, "=", (5/2)(2a[1] + 5.6), 20.6, "=", (5/2)2(a[1] + 2.8), 20.6, "=", (5/cross(2))cross(2)(a[1] + 2.8), 20.6, "=", 5(a[1] + 2.8), 20.6/5, "=", a[1] + 2.8)}}}
           4.12 = a<sub>1</sub> + 2.8
     4.12 - 2.8 = a<sub>1</sub>
           1.32 = a<sub>1</sub> (First term of this AP/AS)

<font color = red><font size = 4><b>On the 5<sup>th</sup> day, he jogged</font></font></b> 1.32 + (5 - 1)(1.4) = 1.32 + 4(1.4) = 1.32 + 5.6 = <font color = red><font size = 4><b>6.92 miles</font></font></b>.

To find the 5<sup>th</sup> term, you could've also used the following formula for a specific tern of an
AP/AS: {{{matrix(1,3, a[n], "=", a[1] + (n - 1)d)}}}, with: a<sub>n</sub> = a Specific tern of the sequence (UNKNOWN, in this case)
                                  n = Term Number being sought (5, in this case)
                                 a<sub>1</sub> = The 1<sup>st</sup> term of the sequence (1.32, in this case)
                                  d = This sequence's common difference (1.4, in this case)
<font color = red><font size = 4><b>SELAH!!</font></font></b></pre>