Question 1208298
<font color=black size=3>
Answer: <font color=red>False</font>
If you said either <font color=red>y' = y/x</font> or <font color=red>y'' = 0</font>, then you would making a true statement.



Work Shown


w = x/y
w' = (y-x*y')/(y^2) .... quotient rule


z = y/x
z' = (y'*x-y)/(x^2) ... quotient rule


(x/y) + (y/x) = 1
w + z = 1
w' + z' = 0  ........ applied implicit derivative
(y-x*y')/(y^2) + (y'*x-y)/(x^2) = 0
( x^2(y-x*y') + y^2(y'*x-y) )/(x^2y^2) = 0
x^2(y-x*y') + y^2(y'*x-y) = 0
x^2*y-x^3*y' + xy^2*y'-y^3 = 0
-x^3*y'+xy^2*y' = -x^2*y+y^3
y'( -x^3+xy^2 ) = -x^2*y+y^3
y' = (-x^2*y+y^3)/(-x^3+xy^2)
y' = (-y(x^2-y^2))/(-x(x^2-y^2))
<font color=red>y' = y/x</font>


Confirmation using WolframAlpha
<a href="https://www.wolframalpha.com/input?i=derivative+%28x%2Fy%29+%2B+%28y%2Fx%29+%3D+1">https://www.wolframalpha.com/input?i=derivative+%28x%2Fy%29+%2B+%28y%2Fx%29+%3D+1</a>


Another way to confirm is to use GeoGebra's ImplicitDerivative command.
<a href="https://geogebra.github.io/docs/manual/en/commands/ImplicitDerivative/">https://geogebra.github.io/docs/manual/en/commands/ImplicitDerivative/</a>
You would type in <font color=blue>ImplicitDerivative(x/y+y/x-1)</font> which produces the output y/x.


Then,
y' = y/x
y'' = (y'*x-y)/(x^2) .... quotient rule
y'' = ((y/x)*x-y)/(x^2) ....... substitute in y' = y/x
y'' = (y-y)/(x^2)
y'' = (0)/(x^2)
<font color=red>y'' = 0</font>



--------------------------------------------------------------------------


Another Approach


(x/y) + (y/x) = 1
(x^2)/(xy)+(y^2)/(xy) = 1
(x^2+y^2)/(xy) = 1


Let
p = x^2+y^2
q = xy
Then
p' = 2x+2y*y'
q' = y+x*y'


So,
(x^2+y^2)/(xy) = 1
d/dx[ (x^2+y^2)/(xy) ] = d/dx[1]
d/dx[ p/q ] = 0
(p'*q - p*q')/(q^2) = 0 ............. quotient rule
p'*q - p*q' = 0
(2x+2y*y')xy - (x^2+y^2)(y+x*y') = 0
2x^2y+2xy^2*y' - (x^2(y+x*y')+y^2(y+x*y')) = 0
2x^2y+2xy^2*y' - (x^2y+x^3*y')-(y^3+xy^2*y') = 0
2x^2y+2xy^2*y' - x^2y-x^3*y'-y^3-xy^2*y' = 0
2xy^2*y'-x^3*y'-xy^2*y' = -2x^2y+x^2y+y^3
y'(2xy^2-x^3-xy^2) = -2x^2y+x^2y+y^3
y'(xy^2-x^3) = -x^2y+y^3
y' = (-x^2y+y^3)/(xy^2-x^3)
y' = (-y(x^2-y^2))/(-x(-y^2+x^2))
y' = (-y(x^2-y^2))/(-x(x^2-y^2))
y' = y/x


From here the steps are the same as the previous section.
</font>