Question 1208213
<pre>
{{{y}}}{{{""=""}}}{{{sin(t)}}}

{{{dy/dx}}}{{{""=""}}}{{{cos(t)*expr(dt/dx)}}}

{{{x}}}{{{""=""}}}{{{ln(t)}}}

{{{dx/dt}}}{{{""=""}}}{{{1/t}}} so 

{{{dt/dx}}}{{{""=""}}}{{{t}}}

{{{dy/dx}}}{{{""=""}}}{{{cos(t)*t}}}

{{{d^2y/dx^2}}}{{{""=""}}}{{{cos(t)*expr(dt/dx) + t(-sin(t)*expr(dt/dx))}}}

{{{d^2y/dx^2}}}{{{""=""}}}{{{cos(t)*t + t(-sin(t)*t)}}}

{{{d^2y/dx^2}}}{{{""=""}}}{{{t*cos(t)-t^2sin(t)^"")}}}

Substitute {{{x = pi}}}

{{{x}}}{{{""=""}}}{{{ln(t)}}}

{{{pi}}}{{{""=""}}}{{{ln(t)}}}

{{{e^pi}}}{{{""=""}}}{{{e^ln(t)}}}

{{{e^pi}}}{{{""=""}}}{{{t}}}

{{{d^2y/dx^2}}}{{{""=""}}}{{{e^pi*cos(e^pi)-(e^pi)^2*sin(e^pi)}}} when {{{x=pi}}}

{{{d^2y/dx^2}}}{{{""=""}}}{{{e^pi*cos(e^pi)-e^(2pi)*sin(e^pi)}}} when {{{x=pi}}}

Approximately 479.2153774

Edwin</pre>