Question 1208213
<font color=black size=3>
x = ln(t)
t = e^x
y = sin(t)
y = sin(e^x)


First Derivative using Chain Rule.
y = sin(e^x)
dy/dx = cos(e^x)*d/dx[ e^x ]
dy/dx = cos(e^x)*e^x


Second Derivative using Product Rule and Chain Rule.
dy/dx = cos(e^x)*e^x
(d^2y)/(dx^2) = -sin(e^x)*e^x*e^x + cos(e^x)*e^x
(d^2y)/(dx^2) = e^x * ( cos(e^x) - sin(e^x)*e^x )


Evaluate at x = pi
(d^2y)/(dx^2) = e^x * ( cos(e^x) - sin(e^x)*e^x )
(d^2y)/(dx^2) = e^pi * ( cos(e^pi) - sin(e^pi)*e^pi )
(d^2y)/(dx^2) = 479.215377
The decimal value is approximate. 
The calculator must be set to radian mode.
</font>