Question 1207918
<pre>
For A and B, find the standard form of the equation of each circle.

A. Center (1,0) and has the point (-3,2).

B. Center (-3,1) and tangent to the y-axis.


Standard form of the equation of a circle: {{{matrix(1,3, (x - h)^2 + (y - k)^2, "=", r^2)}}}, where: {{{"(x, y)"}}} is a point on the circle's circumference
                                                                         {{{"(h, k)"}}} is the CENTER of the circle
                                                                         {{{r}}} is the circle's RADIUS

  {{{matrix(1,3, (x - h)^2 + (y - k)^2, "=", r^2)}}}
{{{matrix(1,3, (- 3 - 1)^2 + (2 - 0)^2, "=", r^2)}}} ----- Substituting (- 3, 2) for (x, y), and (1, 0) for (h, k)
      {{{matrix(3,3, (- 4)^2 + (2)^2, "=", r^2, 16 + 4, "=", r^2, 20, "=", r^2)}}}

  {{{matrix(1,3, (x - h)^2 + (y - k)^2, "=", r^2)}}} <==== Standard form of the equation of a circle 
  {{{matrix(1,3, (x - 1)^2 + (y - 0)^2, "=", 20)}}} ----- Substituting (1, 0) for (h, k), and 20 for r<sup><b>2</sup></b>
      {{{highlight_green(matrix(1,3, (x - 1)^2 + y^2, "=", 20))}}} <=== Standard form of the equation of the circle with center (1,0) and point (-3,2) on its circumference</pre>