Question 1207661
<font color=black size=3>
Multiply both sides by x^2 to go from 
{{{2/(x^2) - 3/x - 4 = 0}}}
to
{{{2 - 3x - 4x^2 = 0}}}



Rearrange the terms so the quadratic is in standard form.
{{{-4x^2 - 3x + 2 = 0}}}


Now apply the quadratic formula.
{{{x = (-b+-sqrt(b^2-4ac))/(2a)}}}


{{{x = (-(-3)+-sqrt((-3)^2-4(-4)(2)))/(2(-4))}}}


{{{x = (3+-sqrt(9 + 32))/(-8)}}}


{{{x = (3+-sqrt(41))/(-8)}}}


{{{x = (3+sqrt(41))/(-8)}}} or {{{x = (3-sqrt(41))/(-8)}}} 


{{{x = (-3-sqrt(41))/(8)}}} or {{{x = (-3+sqrt(41))/(8)}}} 


{{{x = -1.175391}}} or {{{x = 0.425391}}} both of which are approximate.
</font>