Question 1207450
<pre>
Show that the product of the roots of a quadratic equation is c/a.

I see the word product in the application. This tells me to multiply two quadratic formulas and simplify to get c/a. 

Yes? 

No!! It doesn't mean you need to multiply 2 quadratic equations. It merely means that you have to multiply the
2 PARTS (roots) of the quadratic function, as follows:
                                 {{{matrix(1,3, x, "=", (-  b +- sqrt(b^2 - 4ac))/2a)}}}, and so:
                     {{{matrix(2,6, Root, 1, or, x[1], "=", (- b + sqrt(b^2 - 4ac))/(2a),
Root, 2, or, x[2], "=", (- b - sqrt(b^2 - 4ac))/(2a))}}}
PRODUCT of the 2 roots: (x<sub>1</sub> * x<sub>2</sub>): {{{matrix(1,3, ((- b + sqrt(b^2 - 4ac))/(2a)), "*", ((- b - sqrt(b^2 - 4ac))/(2a)))}}}
                                   {{{((- b + sqrt(b^2 - 4ac))(- b - sqrt(b^2 - 4ac)))/(2a(2a))}}} ------- Multiplying numerators and denominators
                    {{{((- b)^2 - b(- sqrt(b^2  - 4ac)) - b (sqrt(b^2 - 4ac)) - (sqrt(b^2 - 4ac))^2)/(4a^2)}}} ---- FOILing numerator   
                    {{{matrix(1,11, (b^2 + b*sqrt(b^2 - 4ac) - b*sqrt(b^2 - 4ac) - (b^2 - 4ac))/(4a^2), "=", (b^2 - b^2 + 4ac)/(4a^2), 
"=", 4ac/(4a^2), "=", (c(4a))/(a(4a)), "=", c(cross(4a))/a(cross(4a)), "=", highlight(highlight_green(highlight(c/a))))}}}</pre>