Question 1207337

{{{2^x = 2^y = 196}}}

so,

{{{2^x = 196}}}

{{{log(2^x)=log(196)}}}

{{{x*log(2)=log(196)}}}

{{{x=log(196)/log(2)}}}


similarly we get

{{{y=log(196)/log(2)}}}



then

 {{{1/x + 1/y=1/(log(196)/log(2))+1/(log(196)/log(2))}}}


{{{1/x + 1/y=log(2)/log(196)+log(2)/log(196)}}}


{{{1/x + 1/y=2log(2)/log(196)}}}....simplify {{{log(196)=log((2*7)^2)=2(log(2) + log(7))}}}


{{{1/x + 1/y=2log(2)/2(log(2) + log(7))}}}


{{{1/x + 1/y=log(2)/(log(2) + log(7))}}}