Question 1206981
<pre>
{{{A + Bi}}}

{{{r=sqrt(A^2+B^2)}}}

{{{theta}}}{{{""=""}}}{{{matrix(1,9,angle,whose,tangent,is,B/A,in,quadrant,of,"(A,B)")}}}

{{{matrix(1,2,trig,form)}}}{{{""=""}}}{{{r(cos(theta)^""+i*sin(theta))}}}

{{{6sqrt(6) -i }}}, {{{A=6sqrt(6)}}}, {{{B=1}}}

{{{r=sqrt((6sqrt(6))^2+1^2)}}
{{{r=sqrt(36(6)+1)}}}
{{{r=sqrt(216+1)}}}
{{{r=sqrt(217)}}}

{{{theta}}}{{{""=""}}}{{{matrix(1,9,angle,whose,tangent,is,1/(6sqrt(6)),in,quadrant,of,

(matrix(1,3,6sqrt(6),",",1)))}}}

The quadrant in QI since A and B are both positive.

In degrees:

{{{theta}}}{{{""=""}}}{{{3.892484484^o}}}

{{{matrix(1,2,trig,form)}}}{{{""=""}}}{{{sqrt(217)(cos(3.892484484^o)^""+i*sin(3.892484484^o))}}}

In radians:

{{{theta}}}{{{""=""}}}{{{0.0679366703}}}

{{{matrix(1,2,trig,form)}}}{{{""=""}}}{{{sqrt(217)(cos(0.0679366703)^""+i*sin(0.0679366703))}}}

Now round off as you were told.

Edwin</pre>