Question 1206909
.
5. a. Find the center and the radius of each circle
(𝑥 − 3)^2 + (𝑦 + 5)^2 = 49

b. For each ellipse, determine the coordinates of the centre, lengths of the major and minor axes.
(𝑥 − 4)^2/25 + (𝑦 + 6)^2/49 = 1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


<pre>
(5)  The center of this circle is the point (3,-5).

     The radius of this circle is  {{{sqrt(49)}}} = 7 units.



(6)  The center of this ellipse is the point (4,-6).

     The length of the major axis is {{{2*sqrt(49)}}} = 2*7 = 14 units.

     The length of the minor axis is {{{2*sqrt(25)}}} = 2*5 = 10 units.
</pre>

Solved.


---------------------


On this subject, see the lessons

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Quadratic-relations-and-conic-sections/Ellipse-definition--canonical-equation--characteristic-points-and-elements.lesson>Ellipse definition, canonical equation, characteristic points and elements</A> 

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/Quadratic-relations-and-conic-sections/Standard-equation-of-an-ellipse.lesson>Standard equation of an ellipse</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/Quadratic-relations-and-conic-sections/Identify-elements-of-an-ellipse-given-by-its-standard-eqn.lesson>Identify elements of an ellipse given by its standard equation</A>

in this site.