Question 1206902
Maximize z = 200x+100y
Subject to: 3x+4y ≤ 24
X+y ≤ 16
X+3y≤30
X,y ≥0<pre>
Are you sure some of those first three ≤'s shouldn't have been ≥ ?.
The graph seems funny because the first two restraints are irrelevant,
So the feasible region is on or below all three lines, which means it's
just on or below the green shaded region below the bottom line.

{{{drawing(600,675/2,-1,31,-1,17,

graph(600,675/2,-1,31,-1,17),

line(0,16,16,0), line(0,10,30,0), line(0,6,8,0),green(

line(0,0,0,6),line(0.07,0,0.07,5.9475),line(0.14,0,0.14,5.895),line(0.14,0,0.14,5.895),
line(0.21,0,0.21,5.8425),line(0.28,0,0.28,5.79),line(0.35,0,0.35,5.7375),line(0.35,0,0.35,5.7375),
line(0.42,0,0.42,5.685),line(0.49,0,0.49,5.6325),line(0.56,0,0.56,5.58),line(0.56,0,0.56,5.58),
line(0.63,0,0.63,5.5275),line(0.7,0,0.7,5.475),line(0.77,0,0.77,5.4225),line(0.77,0,0.77,5.4225),
line(0.84,0,0.84,5.37),line(0.91,0,0.91,5.3175),line(0.98,0,0.98,5.265),line(0.98,0,0.98,5.265),
line(1.05,0,1.05,5.2125),line(1.12,0,1.12,5.16),line(1.19,0,1.19,5.1075),line(1.19,0,1.19,5.1075),
line(1.26,0,1.26,5.055),line(1.33,0,1.33,5.0025),line(1.4,0,1.4,4.95),line(1.4,0,1.4,4.95),
line(1.47,0,1.47,4.8975),line(1.54,0,1.54,4.845),line(1.61,0,1.61,4.7925),line(1.61,0,1.61,4.7925),
line(1.68,0,1.68,4.74),line(1.75,0,1.75,4.6875),line(1.82,0,1.82,4.635),line(1.82,0,1.82,4.635),
line(1.89,0,1.89,4.5825),line(1.96,0,1.96,4.53),line(2.03,0,2.03,4.4775),line(2.03,0,2.03,4.4775),
line(2.1,0,2.1,4.425),line(2.17,0,2.17,4.3725),line(2.24,0,2.24,4.32),line(2.24,0,2.24,4.32),
line(2.31,0,2.31,4.2675),line(2.38,0,2.38,4.215),line(2.45,0,2.45,4.1625),line(2.45,0,2.45,4.1625),
line(2.52,0,2.52,4.11),line(2.59,0,2.59,4.0575),line(2.66,0,2.66,4.005),line(2.66,0,2.66,4.005),
line(2.73,0,2.73,3.9525),line(2.8,0,2.8,3.9),line(2.87,0,2.87,3.8475),line(2.87,0,2.87,3.8475),
line(2.94,0,2.94,3.795),line(3.01,0,3.01,3.7425),line(3.08,0,3.08,3.69),line(3.08,0,3.08,3.69),
line(3.15,0,3.15,3.6375),line(3.22,0,3.22,3.585),line(3.29,0,3.29,3.5325),line(3.29,0,3.29,3.5325),
line(3.36,0,3.36,3.48),line(3.43,0,3.43,3.4275),line(3.5,0,3.5,3.375),line(3.5,0,3.5,3.375),
line(3.57,0,3.57,3.3225),line(3.64,0,3.64,3.27),line(3.71,0,3.71,3.2175),line(3.71,0,3.71,3.2175),
line(3.78,0,3.78,3.165),line(3.85,0,3.85,3.1125),line(3.92,0,3.92,3.06),line(3.92,0,3.92,3.06),
line(3.99,0,3.99,3.0075),line(4.06,0,4.06,2.955),line(4.13,0,4.13,2.9025),line(4.13,0,4.13,2.9025),
line(4.2,0,4.2,2.85),line(4.27,0,4.27,2.7975),line(4.34,0,4.34,2.745),line(4.34,0,4.34,2.745),
line(4.41,0,4.41,2.6925),line(4.48,0,4.48,2.64),line(4.55,0,4.55,2.5875),line(4.55,0,4.55,2.5875),
line(4.62,0,4.62,2.535),line(4.69,0,4.69,2.4825),line(4.76,0,4.76,2.43),line(4.76,0,4.76,2.43),
line(4.83,0,4.83,2.3775),line(4.9,0,4.9,2.325),line(4.97,0,4.97,2.2725),line(4.97,0,4.97,2.2725),
line(5.04,0,5.04,2.22),line(5.11,0,5.11,2.1675),line(5.18,0,5.18,2.115),line(5.18,0,5.18,2.115),
line(5.25,0,5.25,2.0625),line(5.32,0,5.32,2.01),line(5.39,0,5.39,1.9575),line(5.39,0,5.39,1.9575),
line(5.46,0,5.46,1.905),line(5.53,0,5.53,1.8525),line(5.6,0,5.6,1.8),line(5.6,0,5.6,1.8),
line(5.67,0,5.67,1.7475),line(5.74,0,5.74,1.695),line(5.81,0,5.81,1.6425),line(5.81,0,5.81,1.6425),
line(5.88,0,5.88,1.59),line(5.95,0,5.95,1.5375),line(6.02,0,6.02,1.485),line(6.02,0,6.02,1.485),
line(6.09,0,6.09,1.4325),line(6.16,0,6.16,1.38),line(6.23,0,6.23,1.3275),line(6.23,0,6.23,1.3275),
line(6.3,0,6.3,1.275),line(6.37,0,6.37,1.2225),line(6.44,0,6.44,1.17),line(6.44,0,6.44,1.17),
line(6.51,0,6.51,1.1175),line(6.58,0,6.58,1.065),line(6.65,0,6.65,1.0125),line(6.65,0,6.65,1.0125),
line(6.72,0,6.72,0.96),line(6.79,0,6.79,0.9075),line(6.86,0,6.86,0.855),line(6.86,0,6.86,0.855),
line(6.93,0,6.93,0.8025),line(7.0,0,7.0,0.75),line(7.07,0,7.07,0.6975),line(7.07,0,7.07,0.6975),
line(7.14,0,7.14,0.645),line(7.21,0,7.21,0.5925),line(7.28,0,7.28,0.54),line(7.28,0,7.28,0.54),
line(7.35,0,7.35,0.4875),line(7.42,0,7.42,0.435),line(7.49,0,7.49,0.3825),line(7.49,0,7.49,0.3825),
line(7.56,0,7.56,0.33),line(7.63,0,7.63,0.2775),line(7.7,0,7.7,0.225),line(7.7,0,7.7,0.225),
line(7.77,0,7.77,0.1725),line(7.84,0,7.84,0.12),line(7.91,0,7.91,0.0675),line(7.91,0,7.91,0.0675),
line(7.98,0,7.98,0.015))

 )}}}

That means there are only three corner points

(0,0), (0,6), and (8,0)

Substituting (x,y) = (0,0) in z = 200x+100y,
z = 200(0)+100(0) = 0 + 0 = 0

Substituting (x,y) = (0,6) in z = 200x+100y,
z = 200(0)+100(6) = 0 + 600 = 600

Substituting (x,y) = (8,0) in z = 200x+100y,
z = 200(8)+100(0) = 1600 + 0 = 1600

So the maximum value for z is 1600 when x = 8 and y = 0.

Edwin</pre>