Question 1206636
Consider a binomial random variable with n = 9 and p = 0.6. Let x be the
number of successes in the sample. Evaluate the probability. (Round your
answer to three decimal places.)
P(x ≥ 3)
<pre>
It is much easier to calculate P(x=0), P(x=1), P(x=2) and subtract their sum
from 1:

{{{P(x=0)}}}{{{""=""}}}{{{"C(9,0)"*0.6^0*(1-0.6)^(9-0)}}}{{{""=""}}}{{{(1)(1)(0.4)^9}}}{{{""=""}}}{{{0.000262144}}}
{{{P(x=1)}}}{{{""=""}}}{{{"C(9,1)"*0.6^1*(1-0.6)^(9-1)}}}{{{""=""}}}{{{(9)(0.6)(0.4)^8}}}{{{""=""}}}{{{0.003538944}}}
{{{P(x=2)}}}{{{""=""}}}{{{"C(9,2)"*0.6^2*(1-0.6)^(9-2)}}}{{{""=""}}}{{{(36)(0.6)^2(0.4)^7}}}{{{""=""}}}{{{0.021233664}}}

{{{P(x<3)}}}{{{""=""}}}{{{P(x=0)+P(x=1)+P(x=2)}}}{{{""=""}}}{{{0.000262144+0.003538944+0.021233664}}}{{{""=""}}}{{{0.025034752}}}

{{{P(x>=3)}}}{{{""=""}}}{{{1-P(x<3)}}}{{{""=""}}}{{{1-0.025034752}}}{{{""=""}}}{{{0.974965248}}}

Round to 0.975
 
Edwin</pre>