Question 1206303
<pre>
Which quadratic function in vertex form can be represented by the graph that has the vertex at (-6, 0) and passes through the point (2, 8)?

A. y = -1/8x^2 - 6
B. y = 1/8(x + 6)^2
C. y = 1/8x^2 - 6
D. y = -1/8(x + 6)^2

    <font color = red><font size = 4><b>y = a(x - h)<sup>2</sup> + k</font></font></b> <==== Vertex form of a quadratic function
    <font color = red><font size = 4><b>8 = a(2 - - 6)<sup>2</sup> + 0</font></font></b> --- Substituting (- 6, 0) for (h, k), and (2, 8) for (x, y)
    <font color = red><font size = 4><b>8 = a(8)<sup>2</sup></font></font></b> 
    <font color = red><font size = 4><b>8 = 64a</font></font></b> 
   {{{matrix(2,3, 8/64, "=", a, 1/8, "=", a)}}}
                                                          <font color = red><font size = 4><b>y = a(x - h)<sup>2</sup> + k</font></font></b>                                                      
Substituting {{{1/8}}} for a, and (- 6, 0) for (h, k) gives us: {{{matrix(1,3, y, "=", (1/8)(x - - 6)^2 + 0)}}}
                                                         {{{highlight_green(matrix(1,6, y, "=", (1/8)(x + 6)^2, "(CHOICE", highlight("B."), ")")))}}}</pre>