Question 115821



The point ({{{-8}}},{{{4}}}) is on the graph of {{{y = f(x)}}}. 

Find the corresponding point on the graph:

a.	{{{y = 2 f(2x-4) – 3}}}………plug in {{{x}}} and {{{y}}} values

{{{4 = 2 f(2*(-8)-4) – 3}}}

{{{4 = 2 f( - 16 -4) – 3}}}

{{{4 + 3 = 2 f( - 20) }}}

{{{ 2 f( - 20) =   3 + 4}}}

{{{ 2 f( - 20) =  7 }}}…….divide both sides by {{{2}}}

{{{  f( - 20) =  7/2}}}

{{{  f( - 20) =  3(1/2)}}}

the corresponding point is: ({{{-20}}},{{{3(1/2)}}})

b. {{{y = 4 f(3x + 2) +5}}}

{{{4 = 4 f(3(-8) + 2) +5}}}

{{{4 = 4 f(- 24 + 2) +5}}}

{{{4 - 5 = 4 f(- 22 ) }}}

{{{4 f(- 22 )  = 4 - 5}}}

{{{4 f(- 22 )  =  - 1}}}…….divide both sides by {{{4}}}

{{{ f(- 22 )  = -1/4}}}

the corresponding point is:({{{-22}}},{{{-1/4}}})

b.	{{{y = f(x/2 - 4) – 5}}}

{{{4 = f(-8/2 - 4) – 5}}}

{{{4 = f(-4 - 4) – 5}}}

{{{4 + 5 = f(- 8 ) }}}

{{{ f(- 8 )=  5 + 4}}}

{{{ f(- 8 )=  9}}}

the corresponding point is:({{{-8}}},{{{9}}})