Question 1205034
Graph the function for two periods.

{{{f(x)=tan(x)-2}}}

{{{ graph( 600, 600, -7, 7, -7, 7,  tan(x)-2) }}}


Identify the stretching factor and midline equation.


Tangent Function of the Form 

{{{y = a *tan (b(x - h)) + k}}}
.
{{{a}}}  -  gives the amplitude, or vertical stretch or compression, for the function.
{{{b}}}  -  indicates the horizontal compression factor for the function. 
 the period= {{{pi/ b}}}
{{{h }}}-gives the horizontal shift for the function.
{{{k}}} - gives the vertical shift for the function.


The graph of tangent has no maximum or minimum value. Therefore, tangent is an example of a periodic function with {{{NO }}}{{{midline}}} or{{{ amplitude}}}.


{{{f(x)=tan(x)-2 }}} 

In this case, 
 amplitude: {{{none}}}
{{{b=1}}}, the period of tangent is{{{ pi/b=pi/1=pi}}}
{{{h =0}}}-indicates there is {{{no}}} horizontal shift 
 {{{k = -2}}}, indicating a {{{vertical }}}shift of two units {{{down}}}