Question 1204866


the number of {{{2mm}}} blocks ({{{y}}}) needed for any number of {{{4mm}}} blocks ({{{x}}})

relationship is linear

{{{y=mx+b}}}

use given values for {{{x}}} and {{{y}}} to find {{{m}}} and {{{b}}}

given:

{{{x}}}|{{{ y}}}
{{{0}}}|{{{18-2(0)=18}}}
{{{6}}}|{{{18-2(6)=6}}}
{{{7}}}|{{{18-2(7)=4}}}
{{{x}}}|?


use two points to find a slope : ({{{0}}},{{{18}}}) and ({{{6}}},{{{6}}})

{{{slope m=(6-18)/6-0)=-12/6=-2}}}

since we have ({{{0}}},{{{18}}}), means {{{y}}}-intercept is {{{b=18}}},and your equation is:

{{{y=-2x+18}}}
or
{{{y=18-2x}}}

so, when {{{x}}} value of 4mm blocks is unknown (as you can see from given data, it is {{{x}}}), then 2mm blocks {{{y}}} will be {{{18-2x}}}

so answer is: 18-2(x)

4mm blocks are: {{{0}}},{{{6}}},{{{7}}},{{{x}}}
2mm blocks are: {{{18}}}, {{{6}}}, {{{4}}}, {{{18-2(x)}}}