Question 115555
Remember, consecutive integers follow the pattern {{{x}}}, {{{x+1}}}, etc.


So if their product is 90, then 


{{{x(x+1)=90}}}



{{{x^2+x=90}}} Distribute



{{{x^2+x-90=0}}} Move all of the terms to the left side



{{{(x+10)(x-9)=0}}} Factor the left side (note: if you need help with factoring, check out this <a href=http://www.algebra.com/algebra/homework/playground/change-this-name4450.solver>solver</a>)




Now set each factor equal to zero:

{{{x+10=0}}} or  {{{x-9=0}}} 


{{{x=-10}}} or  {{{x=9}}}    Now solve for x in each case



So our answer is 

 {{{x=-10}}} or  {{{x=9}}} 





So our two numbers are either 9,10 <b>or</b> -10,-9