Question 1204348

{{{mu=165000 }}}
{{{sigma=21000}}}


for middle {{{95}}}% values ; critical value of {{{z }}} = ±{{{1.96 }}}


therefore corresponding lower end value is

{{{mu+z*sigma =165000-1.96*21000 =123840}}}

and upper end value

{{{mu+z*sigma =165000+1.96*21000 =206160}}}


{{{95}}}% of the houses fall between prices ${{{123840}}} and ${{{206160}}}





a. ${{{202000}}}


{{{165000  +z*21000 =202000}}}
{{{z*21000 =202000-165000 }}}
{{{z*21000 =37000}}}
{{{z =37000/21000}}}
{{{z =37/21}}}
{{{z =1.7619}}}



b. ${{{70000}}}

{{{165000  +z*21000 =70000}}}
{{{z*21000 =70000-165000 }}}
{{{z*21000 =-95000}}}
{{{z =-95000/21000}}}
{{{z =-95/21}}}
{{{z =-4.5238}}}



c. ${{{175000}}}

{{{165000  +z*21000 =175000}}}
{{{z*21000 =175000-165000 }}}
{{{z*21000 =10000}}}
{{{z =10000/21000}}}
{{{z =10/21}}}
{{{z =0.47619}}}



d. ${{{137000}}}

{{{165000  +z*21000 =137000}}}
{{{z*21000 =137000-165000 }}}
{{{z*21000 =-28000}}}
{{{z =-28000/21000}}}
{{{z =-28/21}}}
{{{z =-4/3}}}
{{{z=-1.3333}}}