Question 1204329
.
Find the general solutions (in radians) of the following equations:
(a) 3 cot (3𝑥 +𝜋/4) = √3
(b) cos(4𝑥) − 3 sin (3𝜋/2+ 2𝑥) + 2 = 0
~~~~~~~~~~~~~~~~~~~~~~~~~~



        In this my post I will solve part  (a),  ONLY.



<pre>
    {{{3*cot(3x+pi/4)}}} = {{{sqrt(3)}}}

implies

    {{{cot(3x+pi/4)}}} = {{{sqrt(3)/3}}}

    {{{tan(3x+pi/4)}}} = {{{3/sqrt(3)}}}

    {{{tan(3x+pi/4)}}} = {{{sqrt(3)}}}

    {{{3x+pi/4}}} = {{{p/3}}} + {{{k*pi}}},  k = 0, +/-1, +/-2, . . . 


    {{{3x}}} = {{{pi/3 - pi/4}}} + {{{k*pi}}}

    {{{3x}}} = {{{pi/12}}} + {{{k*pi}}}

    x = {{{pi/36}}} + {{{k*(pi/3)}}},   k = 0, +/-1, +/-2, . . . 


It is the general solution, in radians.
</pre>

Solved.


------------------


Do not pack more than one problem per post.