Question 1204256

{{{P(x) = 6x^4 - 11x^3 - 12x^2 + 5x}}}...factor completely

{{{P(x) = x(6x^3 - 11x^2 - 12x + 5)}}}

{{{P(x) = x(6x^3 - 17x^2+6x^2+5x- 17x + 5)}}}

{{{P(x) = x((6x^3 +6x^2)- (17x^2+17x) +(5x+ 5))}}}

{{{P(x) = x(6 x^2 - 17 x + 5) (x + 1)}}}

{{{P(x) = x(6 x^2-2x - 15 x + 5) (x + 1)}}}

{{{P(x) = x((6 x^2-2x) - (15 x - 5)) (x + 1)}}}

{{{P(x) = x(2x(3x-1) - 5(3x - 1)) (x + 1)}}}

{{{P(x) = x(3x - 1) (2x - 5) (x + 1)}}}


zeros of the polynomial:

{{{0= x(3x - 1) (2x - 5) (x + 1)}}}

so, zeros are:

{{{x=0}}}

{{{(3x - 1)=0}}}=>{{{3x=1}}}=> {{{x=1/3}}}

{{{2x - 5=0}}}=>{{{2x=5}}}=> {{{x=5/2}}}

{{{(x +1)=0}}}=>{{{x=-1}}}