Question 1204090
<font color=black size=3>
Answer: <font color=red size=4>13.2 years</font>



Work Shown
A = P*(1+r/n)^(n*t)
16250 = 6500*(1+0.07/12)^(12*t)
16250 = 6500*(1.00583333)^(12*t)
16250/6500 = (1.00583333)^(12*t)
2.5 = (1.00583333)^(12*t)
log(2.5) = log( (1.00583333)^(12*t) )
log(2.5) = 12*t*log( 1.00583333 )
t = log(2.5)/( 12*log( 1.00583333 ) )
t = 13.1280168482517
t = <font color=red>13.2</font>
I rounded up to the nearest tenth.


If we tried t = 13.1, then,
A = P*(1+r/n)^(n*t)
A = 6500*(1+0.07/12)^(12*13.1)
A = 16,218.262943099
A = 16,218.26
We're short of the goal $16,250.
This is why t = 13.1 doesn't work.


But if you tried t = <font color=red>13.2</font>, then,
A = P*(1+r/n)^(n*t)
A = 6500*(1+0.07/12)^(12*13.2)
A = 16,331.8569055279
A = 16,331.86
We have gone over the goal of $16,250.
</font>