Question 1203999

Zeros: {{{9}}}, multiplicity {{{1}}}; {{{2}}}, multiplicity {{{2}}}; degree {{{3}}}

 using zero product formula, function of degree {{{3}}} is:

{{{f(x)=(x-x[1])(x-x[2])(x-x[3])}}} where {{{x[1]}}}, {{{x[2]}}}, and {{{x[3] }}} are zeros

given that

{{{x[1]=9 }}}
{{{x[2]=2}}} multiplicity {{{2}}} which means third zero is same, so
{{{ x[3]=2}}}


{{{f(x)=(x-9)(x-2)(x-2) }}}

{{{f(x)=(x-9)(x-2)^2}}}

{{{f(x)=x^3 - 13x^2 + 40x - 36}}}


 {{{ graph( 600, 600, -15, 15, -15, 15, x^3 - 13x^2 + 40x - 36) }}}