Question 1203803
<font color=black size=3>
Part (a)


f(x) = k(1/2)^x
f(1) = k(1/2)^1
f(1) = k/2


f(x) = k(1/2)^x
f(2) = k(1/2)^2
f(2) = k/4


f(x) = k(1/2)^x
f(3) = k(1/2)^3
f(3) = k/8


For any PDF, the f(x) probability values add to 1.


f(1) + f(2) + f(3) = 1
k/2 + k/4 + k/8 = 1
4k/8 + 2k/8 + k/8 = 1
(4k+2k+k)/8 = 1
7k/8 = 1
7k = 1*8
7k = 8
<font color=red size=4>k = 8/7</font>



=========================================


Part (b)


f(x) = k[(1/2)^x - 1/2]
f(0) = k[(1/2)^0 - 1/2]
f(0) = k/2


f(x) = k[(1/2)^x - 1/2]
f(1) = k[(1/2)^1 - 1/2]
f(1) = 0


f(x) = k[(1/2)^x - 1/2]
f(2) = k[(1/2)^2 - 1/2]
f(2) = -k/4


f(0)+f(1)+f(2) = 1
k/2 + 0 + (-k/4) = 1
2k/4 - k/4 = 1
(2k-k)/4 = 1
k/4 = 1
k = 4


f(x) is a PDF if and only if <font color=red size=4>k = 4</font>
</font>