Question 1203720
The graph of y=sqrt(x) is stretched horizontally by a factor of 2, reflected across the x-axis, and translated vertically upward by 3 units.

{{{y=sqrt(x)}}}

horizontal stretch: {{{y=sqrt(bx)}}} if {{{abs(b)<1}}}

if horizontally stretched by a factor of {{{2}}},{{{b=1/2}}} 


{{{y=sqrt((1/2)x)}}}

reflected across the x-axis: Reflextion about the {{{x}}}-axis is {{{f(x) -> -f(x)}}}

{{{y=-sqrt((1/2)x)}}}

translated vertically upward by {{{3}}} units

{{{y=-sqrt((1/2)x)+3}}}


{{{drawing( 600, 600, -5, 5, -5, 5,
locate(4,2,y=sqrt(x)),locate(1,2.5,y=-sqrt(x/2)+3),
 graph( 600, 600, -5, 5, -5, 5,sqrt(x),-sqrt((1/2)x)+3))) }}}