Question 1203615
<br>
A basic application of the product rule for derivatives tells us<br>
(d/dx)((f(x)e^x)) = f(x)e^x+f'(x)e^x<br>
So in this problem probably the easiest way to find h'(x) is to write f(x)=(3x-12)(x^4-x^(1/2)) and find the derivative using that pattern.<br>
f(x) = (3x-12)(5x^4-x^(1/2)) = 15x^5-60x^4-3x^(3/2)+12x^(1/2)<br>
f'(x) = 75x^4-240x^3-(9/2)x^(1/2)+6x^(-1/2)<br>
f(x)+f'(x) = 15x^5+15x^4-240x^3-3x^(3/2)+(15/2)x^(1/2)+6x^(-1/2)<br>
And so<br>
ANSWER: h'(x) = (15x^5+15x^4-240x^3-3x^(3/2)+(15/2)x^(1/2)+6x^(-1/2))<br>