Question 1203468

Find the number of values of {{{ x for which the expression {{{ (x^2 - 9)/(x^2 + 9) + 1/x is undefined




the equation is undefined where the denominator equals{{{  0}}}
,
so,

{{{ (x^2 - 9)/(x^2 + 9) + 1/x}}}

{{{ x(x^2 - 9)/x(x^2 + 9) + 1(x^2 + 9)/x(x^2 + 9)}}}

{{{ (x(x^2 - 9)+ x^2 + 9)/x(x^2 + 9)}}}

{{{ (x^3 - 9x+ x^2 + 9)/x(x^2 + 9)}}}

{{{ (x^3 + x^2 - 9 x + 9)/(x (x^2 + 9))}}}


set denominator equal to zero


{{{ x (x^2 + 9)=0}}}

{{{ x =0}}}

{{{ x^2 + 9=0}}}
{{{ x^2 =- 9}}}
{{{ x =sqrt(- 9)}}}
{{{ x =3i}}}
{{{ x =-3i}}}


 the expression {{{ (x^2 - 9)/(x^2 + 9) + 1/x}}} is undefined when:

{{{ x =0}}}
{{{ x =3i}}}
{{{ x =-3i}}}