Question 1203335
<pre>
Let's use some unit multipliers, OK?

Note: A 'number of units' can be considered as 'the number multiplied by the unit'.

{{{distance}}}{{{""=""}}}{{{rate}}}{{{""*""}}}{{{time}}}
{{{distance}}}{{{""=""}}}{{{22*expr(mile/hour)}}}{{{""*""}}}{{{35*second}}}

Multiply by unit multipliers, i.e., fractions that equal 1 numerically, because
they have equal numerators and denominators in different units.

Notice how we plan the unit multipliers in numerators and denominators so that
the units we want to eliminate will cancel and the ones we want to keep will
not.

{{{distance}}}{{{""=""}}}{{{(22*mile)/(1*hour)}}}{{{""*""}}}{{{35*second/1}}}{{{""*""}}}{{{(5280*feet)/(1*mile)}}}{{{""*""}}}{{{(1*minute)/(60*second)}}}{{{""*""}}}{{{(1*hour)/(60*minute)}}}

Go on a unit-canceling spree:   

{{{distance}}}{{{""=""}}}{{{(22*cross(mile))/(1*cross(hour))}}}{{{""*""}}}{{{35*cross(second)/1}}}{{{""*""}}}{{{(5280*feet)/(1*cross(mile))}}}{{{""*""}}}{{{(1*cross(minute))/(60*cross(second))}}}{{{""*""}}}{{{(1*cross(hour))/(60*cross(minute))}}}

The only unit that did not cancel was 'feet'.

{{{distance}}}{{{""=""}}}{{{(22*35*5280*feet*1*1)/(1*1*1*60*60)}}}

{{{distance}}}{{{""=""}}}{{{1129.3*feet}}}

Edwin</pre>