Question 1201551
-------------------------------------------------------
... has a half life of 12.36 hours.
Determine the exponential decay model that re....
-------------------------------------------------------


{{{y=p(1/2)^(x/12.36)}}}, unless you need some other specific form.



Another way
{{{y=pe^(kx)}}}
-
{{{ln(y)=ln(p)+ln(e^(kx))}}}
{{{ln(y)=ln(p)+kx*ln(e)}}}
{{{ln(y)-ln(p)=kx}}}

{{{k=(1/x)(ln(y)-ln(p))}}}
and using your given half life information
{{{k=(1/12.36)(ln(0.5)-ln(1))}}}
{{{k=(1/12.36)(-ln(2))}}}

{{{y=pe^(-(ln(2)/12.36)x)}}}---------------y=pe^(-(ln(2)/12.36)x)

-
{{{k=-0.0561}}}