Question 1201138
<pre>
If the sum of six consecutive odd integers is 468, what is the smallest of the six integers?

You can use the formula for the SUM of an A.P., which is: {{{matrix(1,3, S[n], "=", (n/2)(2a[1] + (n - 1)d)))}}}, where:
                                    {{{n}}} = The number of elements in the set
                                   {{{S[n]}}} = SUM of the series
                                   {{{a[1]}}} = the 1st number (unknown, in this case)
                                    {{{d}}} = the COMMON DIFFERENCE in the series (ODD, so 2, in this case)
                                  {{{matrix(2,3, S[6], "=", (6/2)(2a[1] + (6 - 1)2), 468, "=", 3(2a[1] + 10))}}}
                                   156 = 2a<font size  = 4><sub>1</sub></font> + 10 ---- Dividing by 3
                              156 - 10 = 2a<font size = 4><sub>1</sub></font>
                                   146 = 2a<font size  = 4><sub>1</sub></font>
First/Smallest of the INTEGERS, or {{{highlight_green(matrix(1,5, a[1], "=", 146/2, "=", highlight(73)))}}}</pre>