Question 1201005
<font color=black size=3>
Original drawing
{{{
drawing(400,400,-5,15,-5,15,

line(0.73,3.41,0.73,10.81),
line(0.73,10.81,3.03,10.81),
line(3.03,10.81,3.03,6.71),
line(3.03,6.71,12.13,6.71),
line(12.13,6.71,12.13,3.41),
line(12.13,3.41,0.73,3.41),

locate(0-2,3.7+3,matrix(1,2,7.4,m)),
locate(1.15-0.5,7.4+4.5,matrix(1,2,2.3,m)),
locate(11.4+1,1.65+3.5,matrix(1,2,3.3,m)),
locate(5.7-1.5,0+3,matrix(1,2,11.4,m))
)
}}}


Let's add the labels x and y
{{{
drawing(400,400,-5,15,-5,15,

line(0.73,3.41,0.73,10.81),
line(0.73,10.81,3.03,10.81),
line(3.03,10.81,3.03,6.71),
line(3.03,6.71,12.13,6.71),
line(12.13,6.71,12.13,3.41),
line(12.13,3.41,0.73,3.41),

locate(0-2,3.7+3,matrix(1,2,7.4,m)),
locate(1.15-0.5,7.4+4.5,matrix(1,2,2.3,m)),
locate(11.4+1,1.65+3.5,matrix(1,2,3.3,m)),
locate(5.7-1.5,0+3,matrix(1,2,11.4,m)),
locate(7,7.75,x),
locate(3.25,9,y)
)
}}}

Across the horizontal top portions, we have 2.3 meters and x meters. Those must add to the 11.4 meters along the bottom.
2.3+x = 11.4
x = 11.4-2.3
x = 9.1


Follow similar steps for the vertical sides
3.3+y = 7.4
y = 7.4-3.3
y = 4.1


The diagram updates to this
{{{
drawing(400,400,-5,15,-5,15,

line(0.73,3.41,0.73,10.81),
line(0.73,10.81,3.03,10.81),
line(3.03,10.81,3.03,6.71),
line(3.03,6.71,12.13,6.71),
line(12.13,6.71,12.13,3.41),
line(12.13,3.41,0.73,3.41),

locate(0-2,3.7+3,matrix(1,2,7.4,m)),
locate(1.15-0.5,7.4+4.5,matrix(1,2,2.3,m)),
locate(11.4+1,1.65+3.5,matrix(1,2,3.3,m)),
locate(5.7-1.5,0+3,matrix(1,2,11.4,m)),
locate(7,7.75,matrix(1,2,9.1,m)),
locate(3.25,9,matrix(1,2,4.1,m))
)
}}}


The perimeter is found by adding up the exterior side lengths.
7.4+2.3+4.1+9.1+3.3+11.4
37.6


The perimeter is exactly 37.6 meters.



--------------------------------------


There are a few approaches we could do to get the area.


We could split the figure like this
{{{
drawing(400,400,-5,15,-5,15,

line(0.73,3.41,0.73,10.81),
line(0.73,10.81,3.03,10.81),
line(3.03,10.81,3.03,6.71),
line(3.03,6.71,12.13,6.71),
line(12.13,6.71,12.13,3.41),
line(12.13,3.41,0.73,3.41),

locate(0-2,3.7+3,matrix(1,2,7.4,m)),
locate(1.15-0.5,7.4+4.5,matrix(1,2,2.3,m)),
locate(11.4+1,1.65+3.5,matrix(1,2,3.3,m)),
locate(7,7.75,matrix(1,2,9.1,m)),

line(3.03,6.71,3.03,3.41)
)
}}}
We'll erase the "11.4 meters" label , and the "4.1 meters" label


The rectangle on the left has area 7.4*2.3 = 17.02
The rectangle on the right has area 9.1*3.3 = 30.03
The total area is 17.02+30.03 = 47.05 square meters.


Another way to split the figure would be to do this
{{{
drawing(400,400,-5,15,-5,15,

line(0.73,3.41,0.73,10.81),
line(0.73,10.81,3.03,10.81),
line(3.03,10.81,3.03,6.71),
line(3.03,6.71,12.13,6.71),
line(12.13,6.71,12.13,3.41),
line(12.13,3.41,0.73,3.41),

locate(1.15-0.5,7.4+4.5,matrix(1,2,2.3,m)),
locate(11.4+1,1.65+3.5,matrix(1,2,3.3,m)),
locate(5.7-1.5,0+3,matrix(1,2,11.4,m)),
locate(3.25,9,matrix(1,2,4.1,m)),

line(0.73,6.71,3.03,6.71)
)
}}}
I'll let you calculate the area based on this configuration. You should get 47.05 as the final result.



Yet another method to do is to form this larger enveloping rectangle
{{{
drawing(400,400,-5,15,-5,15,

line(0.73,3.41,0.73,10.81),
line(0.73,10.81,3.03,10.81),
line(3.03,10.81,3.03,6.71),
line(3.03,6.71,12.13,6.71),
line(12.13,6.71,12.13,3.41),
line(12.13,3.41,0.73,3.41),

locate(0-2,3.7+3,matrix(1,2,7.4,m)),
locate(1.15-0.5,7.4+4.5,matrix(1,2,2.3,m)),
locate(11.4+1,1.65+3.5,matrix(1,2,3.3,m)),
locate(5.7-1.5,0+3,matrix(1,2,11.4,m)),
locate(7,7.75,matrix(1,2,9.1,m)),
locate(3.25,9,matrix(1,2,4.1,m)),

line(12.13,3.41,12.13,10.81),
line(3.03,10.81,12.13,10.81)
)
}}}
The larger rectangle is 7.4 m by 11.4 m
The smaller rectangle is 4.1 m by 9.1 m


So,
area of L shape = (larger rectangle) - (smaller rectangle)
area of L shape = (7.4*11.4) - (4.1*9.1)
area of L shape = 84.36 - 37.31
area of L shape = 47.05


--------------------------------------
--------------------------------------



Summary
Perimeter = <font color=red>37.6 meters</font>
Area = <font color=red>47.05 square meters</font>
</font>