Question 1200110
<pre>
{{{ sqrt(3a)(sqrt(12a) - 2sqrt(8a^2)) }}}

Does the {{{ sqrt(3a) }}} distribute to the {{{ 2 }}} factor in the 2nd term or to just the {{{ sqrt(8a^2) }}} factor?
Either   {{{ -6a(sqrt(24a^3)) }}}
         or
         {{{ -2(sqrt(24a^3)) }}} ???

Can you please give a complete explanation of this?
Thank you
jadams</pre>
<pre>The {{{sqrt(3a)}}} is OUTSIDE of the parentheses, and {{{sqrt(12a) - 2sqrt(8a^2)}}} is in the parentheses. Therefore, the {{{sqrt(3a)}}} MUST be 
distributed over the 2 monomials, {{{matrix(1,3, sqrt(12a), ", and", - 2sqrt(8a^2))}}} 
We then get: {{{sqrt(3a)(sqrt(12a) - 2sqrt(8a^2))}}}
           {{{matrix(1,9, sqrt(3a) * sqrt(12a), "=", sqrt(3a * 12a), "=", sqrt(36a^2), "=", sqrt(6^2 * a^2), "=", 6a)}}}
           {{{matrix(1,11, sqrt(3a) * - 2sqrt(8a^2), "=", - 2sqrt(3a * 8a^2), "=", - 2sqrt(24a^3), "=", -2sqrt(6 * 2^2 * a^2 * a), "=", -2(2a)sqrt(6a), "=", - 4a*sqrt(6a))}}}

Put them together to get: {{{highlight_green(matrix(1,3, 6a - 4a*sqrt(6a), ", or", 2a(3 - 2*sqrt(6a))))}}}</pre>