Question 1199347
<pre>
{{{tan(x/2)}}}{{{""=""}}}{{{sin(x)}}}

One obvious solution is {{{x=0+n*2pi}}}{{{""=""}}}{{{x=n*2pi}}}

{{{sin(x/2)/cos(x/2)}}}{{{""=""}}}{{{sin(2*expr(x/2))}}}

{{{sin(x/2)/cos(x/2)}}}{{{""=""}}}{{{2sin(x/2)cos(x/2)}}}

Divide both sides by {{{sin(x/2)}}}, assuming {{{x<>0}}}, where
{{{x=0}}} is true in the obvious solution above.

{{{1^""/cos(x/2)}}}{{{""=""}}}{{{2cos(x/2)}}}

{{{1}}}{{{""=""}}}{{{2cos^2(x/2)}}}

{{{1/2}}}{{{""=""}}}{{{cos^2(x/2)}}}

{{{""+-sqrt(1/2)}}}{{{""=""}}}{{{cos(x/2)}}}

{{{cos(x/2)}}}{{{""=""}}}{{{""+-sqrt((1*2)/(2*2))}}}

{{{cos(x/2)}}}{{{""=""}}}{{{""+-sqrt((2)/(4))}}}

{{{cos(x/2)}}}{{{""=""}}}{{{""+-sqrt(2)/2}}}

{{{x/2}}}{{{""=""}}}{{{""+-pi/4+2pi*n}}}

{{{x}}}{{{""=""}}}{{{""+-pi/2+4pi*n}}}

{{{x}}}{{{""=""}}}{{{4pi*n+-pi/2}}}

{{{x}}}{{{""=""}}}{{{pi*(4n +- 1/2 )}}}, where n is any integer.

and also the obvious solution {{{x}}}{{{""=""}}}{{{n*2pi}}}

Edwin</pre>