Question 1198841
4. Describe the transformations applied to 

{{{f(x)=x^2}}} to produce the function {{{f(x)=2(x-5)^2+10}}}


horizontal shift:  right {{{5}}} units
vertical shift:  up {{{10}}} units
reflection about the x-axes: none
reflection about the y-axes: none
vertical  stretch or compression: {{{stretched}}} vertically by a factor of {{{2}}}



5. Convert the following equation into vertex form by completing the square.

{{{f(x) = 2x^2+12x-4}}}

{{{f(x) = (2x^2+12x)-4}}}

{{{f(x) = 2(x^2+6x)-4}}}

{{{f(x) = 2(x^2+6x+b^2)-2b^2-4}}}........{{{b=6/2=3}}}

{{{f(x) = 2(x^2+6x+3^2)-2*3^2-4}}}

{{{f(x) = 2(x+3)^2-18-4}}}

{{{f(x) = 2(x+3)^2-22}}}