Question 1198434
If 
{{{f(x)=(2x-1)/(x+1) }}}
and 
{{{g(x)=x/(x-4)}}}

then  

({{{f}}} o {{{g}}}){{{(x)=f(g(x))}}}


({{{f }}}o {{{g}}}){{{(x)=f(x/(x-4))}}}


({{{f }}}o {{{g}}}){{{(x)=(2(x/(x-4))-1)/(x/(x-4)+1) }}}


({{{f}}} o {{{g}}}){{{(x)=(2x/(x-4)-1)/(x/(x-4)+1) }}}


({{{f }}}o{{{ g}}}){{{(x)=((x + 4)/(x - 4))/((2 (x - 2))/(x - 4)) }}}


({{{f }}}o {{{g}}}){{{(x)=(x + 4)/(2 (x - 2)) }}}



 and the domain of ({{{f }}}o {{{g}}}){{{(x)}}}:

since denominator cannot be equal to zero, exclude {{{x=2}}}

{ {{{x}}} element {{{R}}} : {{{x<>2}}} }