Question 1195870

if given that  {{{70}}}% of all voters approve of the mayor's work, then {{{30}}}% of all voters disapprove of the mayor's work


using binomial distribution formula


{{{nCx * P^x * (1 - P)^(n - x)}}}

we find the number of ways only {{{1}}} person approves ({{{ nCx }}}) of the mayor multiplied by the probability {{{1}}} person approves({{{ P^x }}}) and{{{ 2}}} people disapprove ( {{{(1 - P)^(n - x)}}} )



the number of ways only {{{1}}} person approves is {{{x}} of {{{n}} persons

{{{P=probability}}} (is given)


{{{3C1 *0.7^1(1-0. 7)^(3-1)}}} since {{{ 3C1=3!/((3-1)!*1!)=3}}}
={{{3*0.7^1(. 3)^2}}}
={{{3*0. 7*0. 09}}}
={{{0. 189}}}