Question 1195855
<a href="https://ibb.co/JCZp5J2"><img src="https://i.ibb.co/JCZp5J2/study140122-frustum026245915134941061485.png" alt="study140122-frustum026245915134941061485" border="0"></a>


given:

the diameter of its ends are: {{{80cm}}} and {{{120cm}}} and the thickness is {{{30cm}}}


A=pi(a^2+b^2+2Rh)

{{{a}}} is the radius of the smaller base->{{{a=80cm/2=40cm}}}
{{{b}}}is the radius of the larger base->{{{b=120cm/2=60cm}}}
{{{R}}} is the radius of the sphere
{{{h}}} is the difference in height of the two base->{{{h=30cm}}}


As we can see, we first have to determine the radius of the sphere {{{R}}}. We can find the radius from the given base diameters and frustum height.


{{{R=sqrt(b^2+(b^2-a^2-h^2)/(2h))^2)}}}

{{{R=sqrt(60^2+((60^2-40^2-30^2)/(2*30))^2))}}}
{{{R=62.74}}}



then the area is:

{{{A=pi(40^2+60^2+2*62.74*30)}}}

{{{A=28162.49cm^2}}}